A quantitative theory of the functions of the hippocampal CA3 network in memory
نویسنده
چکیده
A quantitative computational theory of the operation of the hippocampal CA3 system as an autoassociation or attractor network used in episodic memory system is described. In this theory, the CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial, associations between any spatial location (place in rodents, or spatial view in primates) and an object or reward, and to provide for completion of the whole memory during recall from any part. The theory is extended to associations between time and object or reward to implement temporal order memory, also important in episodic memory. The dentate gyrus (DG) performs pattern separation by competitive learning to produce sparse representations suitable for setting up new representations in CA3 during learning, producing for example neurons with place-like fields from entorhinal cortex grid cells. The dentate granule cells produce by the very small number of mossy fiber (MF) connections to CA3 a randomizing pattern separation effect important during learning but not recall that separates out the patterns represented by CA3 firing to be very different from each other, which is optimal for an unstructured episodic memory system in which each memory must be kept distinct from other memories. The direct perforant path (pp) input to CA3 is quantitatively appropriate to provide the cue for recall in CA3, but not for learning. Tests of the theory including hippocampal subregion analyses and hippocampal NMDA receptor knockouts are described, and support the theory.
منابع مشابه
A Morphometeric Study on CA3 Hippocampal Field in Young Rats Following Maternal Administration of Boswellia Serrata Resin During Gestation
Objective It has previously been shown that prenatal maternal administration of Boswellia serrata gum resin (Frankincense) improved learning and memory performance associated with an increase in the size of neuronal bodies in CA3 (Cornu Ammonis) of hippocampus. Continuing the previous work, a morphometric study was designed on CA3 field to examine precisely the effect of prenatal administratio...
متن کاملEffects of Ginkgo biloba extract on the structure of Cornu Ammonis in aged rat: A morphometric study
Objective(s):Growing evidence indicates that extract of Ginkgo biloba (EGb) attenuates hippocampal-dependent memory deficit in aged individuals; however, very little is known about the effect of EGb on the structure of hippocampus. Therefore we examined the EGb-induced morphological changes of the Cornu Ammonis (CA) region in aged rats. Materials and Methods: Sixteen aged male Wistar rats, 24 ...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملA Stereological Study on Hippocampal Subfields Following Administration of Methamphetamine in Male Mice
Background and Aims: This study examined sub-chronic effects of Methamphetamine (METH) on the stereological parameters in the Cornu Ammonis (CA) of the hippocampus in adult mice. Materials and Methods: Fifteen adult male mice, eight weeks old, were randomly divided into three groups: receive saline (controls), or low-dose (LD) 2.5 mg/kg METH, or high-dose (HD) 25 mg/kg METH, via daily intrap...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013